Beego 高级查询

基本用法

ORM 以 QuerySeter 来组织查询,每个返回 QuerySeter 的方法都会获得一个新的 QuerySeter 对象。

基本使用方法:

1
2
3
4
5
6
7
8
o := orm.NewOrm()

// 获取 QuerySeter 对象,user 为表名
qs := o.QueryTable("user")

// 也可以直接使用对象作为表名
user := new(User)
qs = o.QueryTable(user) // 返回 QuerySeter

expr

QuerySeter 中用于描述字段和 sql 操作符,使用简单的 expr 查询方法

字段组合的前后顺序依照表的关系,比如 User 表拥有 Profile 的外键,那么对 User 表查询对应的 Profile.Age 为条件,则使用 Profile__Age 注意,字段的分隔符号使用双下划线 __,除了描述字段,expr 的尾部可以增加操作符以执行对应的 sql 操作。比如 Profile__Age__gt 代表 Profile.Age > 18 的条件查询。

注释后面将描述对应的 sql 语句,仅仅是描述 expr 的类似结果,并不代表实际生成的语句。

1
2
3
4
5
6
7
8
9
10
qs.Filter("id", 1) // WHERE id = 1
qs.Filter("profile__age", 18) // WHERE profile.age = 18
qs.Filter("Profile__Age", 18) // 使用字段名和 Field 名都是允许的
qs.Filter("profile__age", 18) // WHERE profile.age = 18
qs.Filter("profile__age__gt", 18) // WHERE profile.age > 18
qs.Filter("profile__age__gte", 18) // WHERE profile.age >= 18
qs.Filter("profile__age__in", 18, 20) // WHERE profile.age IN (18, 20)

qs.Filter("profile__age__in", 18, 20).Exclude("profile__lt", 1000)
// WHERE profile.age IN (18, 20) AND NOT profile_id < 1000

Operators

当前支持的操作符号:

后面以 i 开头的表示:大小写不敏感

exact

Filter / Exclude / Condition expr 的默认值

1
2
3
4
qs.Filter("name", "slene") // WHERE name = 'slene'
qs.Filter("name__exact", "slene") // WHERE name = 'slene'
// 使用 = 匹配,大小写是否敏感取决于数据表使用的 collation
qs.Filter("profile_id", nil) // WHERE profile_id IS NULL

iexact

1
2
3
qs.Filter("name__iexact", "slene")
// WHERE name LIKE 'slene'
// 大小写不敏感,匹配任意 'Slene' 'sLENE'

contains

1
2
3
qs.Filter("name__contains", "slene")
// WHERE name LIKE BINARY '%slene%'
// 大小写敏感, 匹配包含 slene 的字符

icontains

1
2
3
qs.Filter("name__icontains", "slene")
// WHERE name LIKE '%slene%'
// 大小写不敏感, 匹配任意 'im Slene', 'im sLENE'

in

1
2
3
4
5
6
7
8
9
qs.Filter("profile__age__in", 17, 18, 19, 20)
// WHERE profile.age IN (17, 18, 19, 20)


ids:=[]int{17,18,19,20}
qs.Filter("profile__age__in", ids)
// WHERE profile.age IN (17, 18, 19, 20)

// 同上效果

gt / gte

1
2
3
4
5
qs.Filter("profile__age__gt", 17)
// WHERE profile.age > 17

qs.Filter("profile__age__gte", 18)
// WHERE profile.age >= 18

lt / lte

1
2
3
4
5
qs.Filter("profile__age__lt", 17)
// WHERE profile.age < 17

qs.Filter("profile__age__lte", 18)
// WHERE profile.age <= 18

startswith / istartswith

1
2
3
4
5
6
7
8
qs.Filter("name__startswith", "slene")
// WHERE name LIKE BINARY 'slene%'
// 大小写敏感, 匹配以 'slene' 起始的字符串


qs.Filter("name__istartswith", "slene")
// WHERE name LIKE 'slene%'
// 大小写不敏感, 匹配任意以 'slene', 'Slene' 起始的字符串

endswith / iendswith

1
2
3
4
5
6
7
8
qs.Filter("name__endswith", "slene")
// WHERE name LIKE BINARY '%slene'
// 大小写敏感, 匹配以 'slene' 结束的字符串


qs.Filter("name__iendswithi", "slene")
// WHERE name LIKE '%slene'
// 大小写不敏感, 匹配任意以 'slene', 'Slene' 结束的字符串

isnull

1
2
3
4
5
6
qs.Filter("profile__isnull", true)
qs.Filter("profile_id__isnull", true)
// WHERE profile_id IS NULL

qs.Filter("profile__isnull", false)
// WHERE profile_id IS NOT NULL

高级查询接口使用

QuerySeter 是高级查询使用的接口,我们来熟悉下他的接口方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
type QuerySeter interface {
Filter(string, …interface{}) QuerySeter
Exclude(string, …interface{}) QuerySeter
SetCond(*Condition) QuerySeter
Limit(int, …int64) QuerySeter
Offset(int64) QuerySeter
GroupBy(…string) QuerySeter
OrderBy(…string) QuerySeter
Distinct() QuerySeter
RelatedSel(…interface{}) QuerySeter
Count() (int64, error)
Exist() bool
Update(Params) (int64, error)
Delete() (int64, error)
PrepareInsert() (Inserter, error)
All(interface{}, …string) (int64, error)
One(interface{}, …string) error
Values(*[]Params, …string) (int64, error)
ValuesList(*[]ParamsList, …string) (int64, error)
ValuesFlat(*ParamsList, string) (int64, error)
}
  • 每个返回 QuerySeter 的 api 调用时都会新建一个 QuerySeter,不影响之前创建的。
  • 高级查询使用 Filter 和 Exclude 来做常用的条件查询。囊括两种清晰的过滤规则:包含, 排除

Filter

用来过滤查询结果,起到 包含条件 的作用

多个 Filter 之间使用 AND 连接

1
2
qs.Filter("profile__isnull", true).Filter("name", "slene")
// WHERE profile_id IS NULL AND name = 'slene'

Exclude

用来过滤查询结果,起到 排除条件 的作用

使用 NOT 排除条件

多个 Exclude 之间使用 AND 连接

1
2
qs.Exclude("profile__isnull", true).Filter("name", "slene")
// WHERE NOT profile_id IS NULL AND name = 'slene'

SetCond

自定义条件表达式

1
2
3
4
5
6
7
8
9
10
cond := orm.NewCondition()
cond1 := cond.And("profile__isnull", false).AndNot("status__in", 1).Or("profile__age__gt", 2000)

qs := orm.QueryTable("user")
qs = qs.SetCond(cond1)
// WHERE ... AND ... AND NOT ... OR ...

cond2 := cond.AndCond(cond1).OrCond(cond.And("name", "slene"))
qs = qs.SetCond(cond2).Count()
// WHERE (... AND ... AND NOT ... OR ...) OR ( ... )

Limit

限制最大返回数据行数,第二个参数可以设置 Offset

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
var DefaultRowsLimit = 1000 // ORM 默认的 limit 值为 1000

// 默认情况下 select 查询的最大行数为 1000
// LIMIT 1000

qs.Limit(10)
// LIMIT 10

qs.Limit(10, 20)
// LIMIT 10 OFFSET 20 注意跟 SQL 反过来的

qs.Limit(-1)
// no limit

qs.Limit(-1, 100)
// LIMIT 18446744073709551615 OFFSET 100
// 18446744073709551615 是 1<<64 - 1 用来指定无 limit 限制 但有 offset 偏移的情况

Offset

设置 偏移行数

1
2
qs.Offset(20)
// LIMIT 1000 OFFSET 20

GroupBy

1
2
qs.GroupBy("id", "age")
// GROUP BY id,age

OrderBy

参数使用 expr

在 expr 前使用减号- 表示DESC的排列

1
2
3
4
5
qs.OrderBy("id", "-profile__age")
// ORDER BY id ASC, profile.age DESC

qs.OrderBy("-profile__age", "profile")
// ORDER BY profile.age DESC, profile_id ASC

Distinct

对应 sql 的 distinct 语句, 返回不重复的值.

1
2
qs.Distinct()
// SELECT DISTINCT

RelatedSel

关系查询,参数使用 expr

1
2
3
4
5
6
7
8
9
10
11
12
var DefaultRelsDepth = 5 // 默认情况下直接调用 RelatedSel 将进行最大 5 层的关系查询

qs := o.QueryTable("post")

qs.RelatedSel()
// INNER JOIN user ... LEFT OUTER JOIN profile ...

qs.RelatedSel("user")
// INNER JOIN user ...
// 设置 expr 只对设置的字段进行关系查询

// 对设置 null 属性的 Field 将使用 LEFT OUTER JOIN

Count

依据当前的查询条件,返回结果行数

1
2
cnt, err := o.QueryTable("user").Count() // SELECT COUNT(*) FROM USER
fmt.Printf("Count Num: %s, %s", cnt, err)

Exist

1
2
exist := o.QueryTable("user").Filter("UserName", "Name").Exist()
fmt.Printf("Is Exist: %s", exist)

Update

依据当前查询条件,进行批量更新操作

1
2
3
4
5
num, err := o.QueryTable("user").Filter("name", "slene").Update(orm.Params{
"name": "astaxie",
})
fmt.Printf("Affected Num: %s, %s", num, err)
// SET name = "astaixe" WHERE name = "slene"

原子操作增加字段值

1
2
3
4
5
// 假设 user struct 里有一个 nums int 字段
num, err := o.QueryTable("user").Update(orm.Params{
"nums": orm.ColValue(orm.ColAdd, 100),
})
// SET nums = nums + 100

orm.ColValue 支持以下操作

1
2
3
4
ColAdd      // 加
ColMinus // 减
ColMultiply // 乘
ColExcept // 除

Delete

依据当前查询条件,进行批量删除操作

1
2
3
num, err := o.QueryTable("user").Filter("name", "slene").Delete()
fmt.Printf("Affected Num: %s, %s", num, err)
// DELETE FROM user WHERE name = "slene"

PrepareInsert

用于一次 prepare 多次 insert 插入,以提高批量插入的速度。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
var users []*User
...
qs := o.QueryTable("user")
i, _ := qs.PrepareInsert()
for _, user := range users {
id, err := i.Insert(user)
if err == nil {
...
}
}
// PREPARE INSERT INTO user (`name`, ...) VALUES (?, ...)
// EXECUTE INSERT INTO user (`name`, ...) VALUES ("slene", ...)
// EXECUTE ...
// ...
i.Close() // 别忘记关闭 statement

All

返回对应的结果集对象

All 的参数支持 *[]Type[]Type 两种形式的 slice

1
2
3
var users []*User
num, err := o.QueryTable("user").Filter("name", "slene").All(&users)
fmt.Printf("Returned Rows Num: %s, %s", num, err)

All / Values / ValuesList / ValuesFlat 受到 Limit 的限制,默认最大行数为 1000

可以指定返回的字段:

1
2
3
4
5
6
7
8
9
10
type Post struct {
Id int
Title string
Content string
Status int
}

// 只返回 Id 和 Title
var posts []Post
o.QueryTable("post").Filter("Status", 1).All(&posts, "Id", "Title")

对象的其他字段值将会是对应类型的默认值

One

尝试返回单条记录

1
2
3
4
5
6
7
8
9
10
var user User
err := o.QueryTable("user").Filter("name", "slene").One(&user)
if err == orm.ErrMultiRows {
// 多条的时候报错
fmt.Printf("Returned Multi Rows Not One")
}
if err == orm.ErrNoRows {
// 没有找到记录
fmt.Printf("Not row found")
}

可以指定返回的字段:

1
2
3
// 只返回 Id 和 Title
var post Post
o.QueryTable("post").Filter("Content__istartswith", "prefix string").One(&post, "Id", "Title")

对象的其他字段值将会是对应类型的默认值

Values

返回结果集的 key => value 值

key 为 Model 里的 Field name,value 的值 以 string 保存

1
2
3
4
5
6
7
8
var maps []orm.Params
num, err := o.QueryTable("user").Values(&maps)
if err == nil {
fmt.Printf("Result Nums: %d\n", num)
for _, m := range maps {
fmt.Println(m["Id"], m["Name"])
}
}

返回指定的 Field 数据

TODO: 暂不支持级联查询 RelatedSel 直接返回 Values

但可以直接指定 expr 级联返回需要的数据

1
2
3
4
5
6
7
8
9
var maps []orm.Params
num, err := o.QueryTable("user").Values(&maps, "id", "name", "profile", "profile__age")
if err == nil {
fmt.Printf("Result Nums: %d\n", num)
for _, m := range maps {
fmt.Println(m["Id"], m["Name"], m["Profile"], m["Profile__Age"])
// map 中的数据都是展开的,没有复杂的嵌套
}
}

ValuesList

顾名思义,返回的结果集以slice存储

结果的排列与 Model 中定义的 Field 顺序一致

返回的每个元素值以 string 保存

1
2
3
4
5
6
7
8
var lists []orm.ParamsList
num, err := o.QueryTable("user").ValuesList(&lists)
if err == nil {
fmt.Printf("Result Nums: %d\n", num)
for _, row := range lists {
fmt.Println(row)
}
}

当然也可以指定 expr 返回指定的 Field

1
2
3
4
5
6
7
8
var lists []orm.ParamsList
num, err := o.QueryTable("user").ValuesList(&lists, "name", "profile__age")
if err == nil {
fmt.Printf("Result Nums: %d\n", num)
for _, row := range lists {
fmt.Printf("Name: %s, Age: %s\m", row[0], row[1])
}
}

ValuesFlat

只返回特定的 Field 值,将结果集展开到单个 slice 里

1
2
3
4
5
6
var list orm.ParamsList
num, err := o.QueryTable("user").ValuesFlat(&list, "name")
if err == nil {
fmt.Printf("Result Nums: %d\n", num)
fmt.Printf("All User Names: %s", strings.Join(list, ", "))
}

关系查询

以例子里的 模型定义 来看下怎么进行关系查询

OneToOne

User 和 Profile 是 OneToOne 的关系

已经取得了 User 对象,查询 Profile:

1
2
3
4
5
user := &User{Id: 1}
o.Read(user)
if user.Profile != nil {
o.Read(user.Profile)
}

直接关联查询:

1
2
3
4
5
6
7
8
user := &User{}
o.QueryTable("user").Filter("Id", 1).RelatedSel().One(user)
// 自动查询到 Profile
fmt.Println(user.Profile)
// 因为在 Profile 里定义了反向关系的 User,所以 Profile 里的 User 也是自动赋值过的,可以直接取用。
fmt.Println(user.Profile.User)

// [SELECT T0.`id`, T0.`name`, T0.`profile_id`, T1.`id`, T1.`age` FROM `user` T0 INNER JOIN `profile` T1 ON T1.`id` = T0.`profile_id` WHERE T0.`id` = ? LIMIT 1000] - `1`

通过 User 反向查询 Profile:

1
2
3
4
5
var profile Profile
err := o.QueryTable("profile").Filter("User__Id", 1).One(&profile)
if err == nil {
fmt.Println(profile)
}

ManyToOne

Post 和 User 是 ManyToOne 关系,也就是 ForeignKey 为 User

1
2
3
4
5
6
type Post struct {
Id int
Title string
User *User `orm:"rel(fk)"`
Tags []*Tag `orm:"rel(m2m)"`
}
1
2
3
4
5
6
7
8
9
var posts []*Post
num, err := o.QueryTable("post").Filter("User", 1).RelatedSel().All(&posts)
if err == nil {
fmt.Printf("%d posts read\n", num)
for _, post := range posts {
fmt.Printf("Id: %d, UserName: %d, Title: %s\n", post.Id, post.User.UserName, post.Title)
}
}
// [SELECT T0.`id`, T0.`title`, T0.`user_id`, T1.`id`, T1.`name`, T1.`profile_id`, T2.`id`, T2.`age` FROM `post` T0 INNER JOIN `user` T1 ON T1.`id` = T0.`user_id` INNER JOIN `profile` T2 ON T2.`id` = T1.`profile_id` WHERE T0.`user_id` = ? LIMIT 1000] - `1`

根据 Post.Title 查询对应的 User

RegisterModel 时,ORM 也会自动建立 User 中 Post 的反向关系,所以可以直接进行查询

1
2
3
4
5
var user User
err := o.QueryTable("user").Filter("Post__Title", "The Title").Limit(1).One(&user)
if err == nil {
fmt.Printf(user)
}

ManyToMany

Post 和 Tag 是 ManyToMany 关系

设置 rel(m2m) 以后,ORM 会自动创建中间表

1
2
3
4
5
6
7
8
9
10
11
12
type Post struct {
Id int
Title string
User *User `orm:"rel(fk)"`
Tags []*Tag `orm:"rel(m2m)"`
}

type Tag struct {
Id int
Name string
Posts []*Post `orm:"reverse(many)"`
}

一条 Post 纪录可能对应不同的 Tag 纪录,一条 Tag 纪录可能对应不同的 Post 纪录,所以 Post 和 Tag 属于多对多关系,通过 tag name 查询哪些 post 使用了这个 tag

1
2
var posts []*Post
num, err := dORM.QueryTable("post").Filter("Tags__Tag__Name", "golang").All(&posts)

通过 post title 查询这个 post 有哪些 tag

1
2
var tags []*Tag
num, err := dORM.QueryTable("tag").Filter("Posts__Post__Title", "Introduce Beego ORM").All(&tags)

载入关系字段

LoadRelated 用于载入模型的关系字段,包括所有的 rel/reverse - one/many 关系

ManyToMany 关系字段载入

1
2
3
4
5
6
7
8
9
// 载入相应的 Tags
post := Post{Id: 1}
err := o.Read(&post)
num, err := o.LoadRelated(&post, "Tags")

// 载入相应的 Posts
tag := Tag{Id: 1}
err := o.Read(&tag)
num, err := o.LoadRelated(&tag, "Posts")

User 是 Post 的 ForeignKey,对应的 ReverseMany 关系字段载入

1
2
3
4
5
6
7
8
9
10
11
12
type User struct {
Id int
Name string
Posts []*Post `orm:"reverse(many)"`
}

user := User{Id: 1}
err := dORM.Read(&user)
num, err := dORM.LoadRelated(&user, "Posts")
for _, post := range user.Posts {
//...
}

多对多关系操作

创建一个 QueryM2Mer 对象

1
2
3
4
5
6
o := orm.NewOrm()
post := Post{Id: 1}
m2m := o.QueryM2M(&post, "Tags")
// 第一个参数的对象,主键必须有值
// 第二个参数为对象需要操作的 M2M 字段
// QueryM2Mer 的 api 将作用于 Id 为 1 的 Post

QueryM2Mer Add

1
2
3
4
5
6
7
tag := &Tag{Name: "golang"}
o.Insert(tag)

num, err := m2m.Add(tag)
if err == nil {
fmt.Println("Added nums: ", num)
}

Add 支持多种类型 Tag Tag []Tag []Tag []interface{}

1
2
3
4
5
6
7
8
9
10
var tags []*Tag
...
// 读取 tags 以后
...
num, err := m2m.Add(tags)
if err == nil {
fmt.Println("Added nums: ", num)
}
// 也可以多个作为参数传入
// m2m.Add(tag1, tag2, tag3)

QueryM2Mer Remove

从M2M关系中删除 tag

Remove 支持多种类型 Tag Tag []Tag []Tag []interface{}

1
2
3
4
5
6
7
8
9
10
var tags []*Tag
...
// 读取 tags 以后
...
num, err := m2m.Remove(tags)
if err == nil {
fmt.Println("Removed nums: ", num)
}
// 也可以多个作为参数传入
// m2m.Remove(tag1, tag2, tag3)

QueryM2Mer Exist

判断 Tag 是否存在于 M2M 关系中

1
2
3
if m2m.Exist(&Tag{Id: 2}) {
fmt.Println("Tag Exist")
}

QueryM2Mer Clear

清除所有 M2M 关系

1
2
3
4
nums, err := m2m.Clear()
if err == nil {
fmt.Println("Removed Tag Nums: ", nums)
}

QueryM2Mer Count

计算 Tag 的数量

1
2
3
4
nums, err := m2m.Count()
if err == nil {
fmt.Println("Total Nums: ", nums)
}
------ 本文结束 ------
0%